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Abstract 

In 1995 a forest inventory covering,~orthern Namibia was initiated based on stratified 

systematic field sampling of plots with a radius of up to 30 m. In these plots detailed tree 

parameters were measured. Due to security problems the most important wooded parts of 

the area could not be covered completely, while the inventory method used was also very 

costly. This study investigated whether Landsat TM imagery could be used to estimate 

woody vegetation parameters as an alternative. As the existing field sampling method did 

not result in significant relationships between pixel values of different bands and tree 

cover, two sampling methods of different design were tested. Both resulted in statistically 

significant correlations between tree cover and pixel values of band 4 of Landsat TM. 

The increased size of the sample plots in both methods was the main reason for improved 

correlations. The relation between tree cover and Landsat TM band 4 was influenced by 

fire scars and patches of heavy grazing, making monitoring tree cover with satellite 

imagery complicated. Regression models were used to estimate cover and volumes from 

Landsat TM images. Estimated tree cover and volumes obtained by remote sensing were 

compared with volume estimates obtained by field measurements in three areas of 

4orthern Namibia. All fell within 95% confidence limits of the field measurements. The 

results suggest that Landsat TM imagery is suitable for estimating tree cover, volumes 

and biomass on a regional scale for dry semi-deciduous Kalahari woodland vegetation. 

Keywords: Remote sensing, Landsat TM, forestry, Namibia, tree cover, tree biomass, 

tree volume, Kalahari woodland 



Introduction 

A woody vegetation inventory based upon detailed field sampling of tree parameters was 

started in 1995 in Namibia to obtain cover, basal density and volume estimates at species 

level for various regions of a total size of close to 17 million ha of mainly communal 

areas in northern Namibia (Chakanga et al., 1998). It was hoped that this approach would 

result in regional level inventories usefu · for strategic planning of forest resources 
' " ;::u~ <::...-,. 

(Erkkila and Siiskonen, 1990)~~s were also made to use the methodology for 

monitoring woody resources on a long-term basis (Angombe et al., 2000). Processes of 

deforestation and bush thickening are important in Namibia (Erkkila and Siiskonen, 

1990; Toko1a et al., 1999; Erkkila and LOfman, 1999) and throughout southern Africa 

(Archer, 1995; Hudak and Wessman, 1998; Hudak, 1999; Hudak and Wessman, 2001), 

indicating the importance of being able to assess woody vegetation parameters on a large 

scale in Namibia. 

Due to sporadic guerilla warfare on the Namibia-Angolan border flaring up in the late 

1990s, the most important wooded parts of the area could not be covered completely, 

while the inventory method used was tim6""Consurning and with costs of around 0.2 US $ 

ha-1 causing sustainability concerns in this developing country (Verlinden and Laamanen, 

2001). Re~~:.1J'ensing is often considered more cost-effective, reducing the amount of 

fieldwork~e it certainly is an attractive alternative to mtensive fieldwork in war 

zones. 
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This paper investigates to what extent Landsat TM imagery could be used to 1) model 

woody resources in areas not yet covered using limited extra field data, 2) reduce the 

inventory costs, and 3) monitor changes in woody resources over time. An additional 

requirement was that the developed method should be appropriate for a developing 

country with limited resources. 

It has often been demonstrated that woody cover has a higher correlation with satellite 

imagery than other parameters such as basal area and volume (McCloy and Hall, 1991; 

Duncan et al., 1993; Hudak and Wessman, 2001). Previous work using remote sensing 

for forest cover in northern Namibia is limited, although Tokola et al. (1999) worked on 

calibrating Landsat TM images in northern Namibia for forest cover change detection, 

ErkkiHi. and LOfman (1999) used Landsat TM and aerial photography for forest cover 

change and Erkilla (200 1) did a change analysis of forest cover with Landsat TM and 

MSS using supervised classification in a portion of northern Namibia. Forest cover 

change in all these studies was analyzed by comparing forested areas with non-forested 

areas. The present study investigates the use of Landsat TM imagery for estimating tree 

cover, volume and biomass on a pixel by pixel basis. This would potentially enable~ 

Jil;i~changes within forests, in addition to estimating woody resources at regional leveL 

Initially tests were conducted using results of the original inventory method, based on 

plots of maximum 30 m radius. This gave low correlations between TM waveband pixel 

values and various woody plant parameters (Verlinden and Laamanen, 2001). 
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Therefore it was decided to change the field sampling method by 1) increasing the size of 
,;~~L'L~ 

the area covered in each sample and 2).;0' ~ th~ use of estimates of tree parameters 

with appropriate tools for a developing country with the use of more time-consuming 

measurements. 

Material and Methods 

Study Area 

-yt 
The area is located in J'orthern Namibia, between 14 deg E and 23 deg E and 17.2 S and 

19 S (Figure 1). The rainfall gradient is substantial: average 710 mm in the~ast and 350 

~ 
mm in the~st. In the _.West, the area is characterized by Colophospermum mopane Kirk. 

ex J. Leonard shrubland and in the J ast by open woodland with Pterocarpus angolensis 

DC., Baikiaea africana Harms., Guibourtia coleosperma (Benth.) J. Leonard and Burkea 

africana Hook. This vegetation type is often referred to as dry deciduous Kalahari 

woodland and occurs also in adjacent areas of Angola, Botswana, Zambia and 

Zimbabwe. Extensive stands of Colophospermum mopane Kirk. ex J. Leonard trees occur 

also in large floodplain areas in the $ st. 

The two areas where new sampling methodologies were tested are presented in Figure 1. 

To test the validity of the relationships between cover and pixel values of Landsat TM 

band 4, 27 independent samples were collected in three different regions (independent 
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sampling areas in Figure 1) in areas considered secure from warfare at the time. Three 

field sampling areas where traditional field inventories were carried out were used to 

compare the volume estimates obtained by field measurements and satellite imagery 

(Figure 1). 

The wide distribution of test sites in the study area ensured that the obtained results 

would be valid in ~rthern Namibia and areas with similar vegetation in adjacent 

countries. 

Field sampling methods 

Throughout the sampling, woody vegetation with diameter at breast height (1.3 m) (dbh) 

larger or equal than 5 cm was classified as trees. If dbh was smaller than 5 cm, the woody 

vegetation was classified as shrubs. Diameters were measured with calipers. Other 

parameters measured on trees were height and crown diameter, both with a Vertex 

hypsometer. 

Inventory method 1 

In order to test the hypothesis that a small plot size of maximum 30 m influenced the low 

correlations with the satellite imagery, 49 sites were visited as a part of a reconnaissance 

survey prior to a timber inventory in a pilot area. In each site, a tract with three sides at 

right angles of 100 m length was used (Figure 2). Along the tract, a recording point was 

, 



laid after every 20 m. At each recording point (a total of 15 points per tract) the woody 

vegetation cover was estimated separately for woody plants between 2 and 4 m height 

and for trees taller than 4 m. A densiometer (Lemmon, 1957) was used for estimating the , 

canopy cover in the two classes. Four readings per recording point of both height classes 

were taken. In addition, woody _plants lower than 2 m were estimated with a Bitterlich 

/ 
. relascop:_c(Friedel and Chewings, 1988) .~ with factor 5 multiplier to obtain 

r 
percentage canopy cover in each recording point. Average values of cover for the three 

woody plant classes were calculated and used in the analysis. 

Inventory method 2 

Using the data collected with method 1 and visual interpretation of a 3,4 and 5 band 

combination of a Landsat TM image, some large open areas were delineated and left out 

of the sampling for the timber survey in the pilot area. A systematic selection of sample 

units was carried out. Every 1ih sampling unit (or cluster) was established in the field 

with a new design (Figure 2). A cluster of five plots each with a radius of 20 m was used 

to cover a larger area. On each plot, trees with a dbh >= 5 cm were measured (species, 

location, canopy diameter). The location of each tree from the central coordinate was 

obtained by taking the bearing with a compass and measuring the distance from the 

center to the tree with a Vertex distance measurer. The canopy diameter measurements 

in two directions were done for each tree separately without taking into account the 

possible overlap of adjoining crowns. Therefore the crown cover percentage of a plot 

includes a certain amount of overlap in dense stands. This overlap was measured in a GIS 

,, 
7 



by plotting all measured trees with their canopy diameters. This allowed investigating the 

influence of canopy overlap on the relationships between cover and other tree parameters. 

Canopy overlap is defined as the difference between the measured crown cover and the 

projected canopy cover in each cluster. 

Inside each plot, five recording points for estimating cover with the densiometer and the 

Bitterlich relascope were selected. Tree cover of trees with a dbh >= 0.05 m was 

estimated with the densiometer (four readings at each point) . Woody plant cover with a 

dbh < 0.05 m was estimated with the Bitterlich relascope. This method allows the 

companson of results obtained by measuring tree canopy parameters with results 

obtained by estimating these with the densiometer and the Bitterlich relascope used in 

method 1. Using the densiometer is a much faster method to estimate canopy cover than 

measuring individual tree crown cover and therefore this method was tried to see if it 

could replace the time-consuming measurements. 

Volume and biomass estimates 

A total of 24 7 trees of 7 species in four areas were felled for volume and biomass 

functions . Figure 3 shows the diameter distributions of the felled trees, demonstrating that 

a wide range of diameters was used for the calculations. Two volume functions were 

derived and all tree species were allocated to one of the two models and to one of the 7 

reference species (NFI, 1997, Chakanga et al. 1998): 

1) ln (v) = aO + a1 *d + a2*d2 



2) v/d2 = (aO + a1 *d + a2*d2) 

where v= volume ( dm3) 

d= diameter at breast height (cm) 

Table 1 lists the 7 reference species with their volume function parameters and volume 

functions used in the calculations. Table 2 lists all species in the inventories with their 

reference species for the volume calculations. 

The same trees used for volume estimates were also used for estimating biomass 

conversion factors by dry-weighing the tree samples (NFI, 1997). Volume and biomass 

was calculated for all the samples collected with inventory method 2. 

Remote Sensing 

A total of twelve images (Enhanced Thematic Mapper ETM+ and TM 5) were examined 

(Table 3). For one ofthe TM5 scenes only bands 1, 2, 3 and 4 were purchased, the others 

had the full waveband range. 

All satellite images were selected primarily on having cloud-free data and on the same 

seasonal phase of the The end of the wet season and the early dry season 
'J' 

(April-May) ar in N'&rthern Namibia considered to be the optimal period for detecting ,. 

woody plant vegetation (Erkkila and Lofman, 1999; Tokola et al., 1999). 

All images used in the analysis had already been rectified by the supplier but had to be 

re-registered with co-ordinates obtained by GPS in the survey areas during field trips. 
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Only GPS data of 2001 and 2002 were used, as prevwus data were less accurate. 

Registration used in the analysis reduced geometrical errors to a Root Mean Square Error 

(RMSE) of less than 30 m. Overlays with GPS tracks and points collected during field 

trips in three of the study areas confirmed position errors of less than 30 m between 

satellite image registration and GPS locations. This does howeve not ensure that the 

pixel exactly corresponding with the central location of the field sample is used in 

analysis of the first sampling method, as the nearest neighbor re-sampling method was 

used in registration of the images. This method ensures that the original pixel values are 

retained. 

To estimate cover across several images, pixel values had to be transformed as 

histograms of each scene are different. Histogram matching of band 4 was used with the 

algorithm provided in ER Mapper software (ER Mapper2002) to match the output 

histogram to the histogram of a reference image. The scene of Path 1 77 and Row 073 of 

24 April 2000 was used as reference ... a~dove -\:!d th~ largest ~mpling area. During 
'()<\o~\ ~--~h.s~_) 

histogram matchin, the scenes wer~ mosai~ to form one single band scene covering the 

whole study area. Histogram matching was chosen as it was the easiest technique for a 

local team to adopt the methodology as other calibration methods are complicated and 

did not result in very high accuracy in northern Namibia (Tokola et al. 1999). 

An accuracy analysis of the method was carried out with random sampling of pixels in 

overlapping areas of 2 images adjacent to the reference images. Boolean images with 

randomly located sample points were prepared of the overlapping areas. These images 
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were used to extract the corresponding pixel values of the reference image and the 

adjacent histogram matched images. Linear regression analysis was then used to assess 

the accuracy of the matched areas. 

To extract pixels for exploring relationships with TM bands and woody plant cover in 

method 1 (Figure 2)? a square of 100 x 1 OOm with the starting GPS coordinate on one 

corner of the square sample was drawn in IDRISI GIS package (Eastman, 2000). This 

area represents the area covered by each sample in the field. The resulting polygons were 

converted to a Boolean raster image with exactly the same registration as the Landsat TM 

image mosaic. This Boolean image was used to extract the pixel values of the different 

bands of the satellite image mosaic that fell within the 100 x 1 00 m square. The average 

value of all pixel values with more than 50% of their areas falling within the 1 OOx 1 OOm 

square was calculated with IDRISI and used for statistical analysis. 

For method 2 (Figure 2)?circular buffers with a 1 OOm radius around the GPS coordinates 

of the central position of each sample were drawn. The resulting polygons were imported 

into IDRISI and converted to a Boolean raster image with the same registration as the 

corresponding Landsat TM image mosaic. This Boolean image was used to extract the 

pixel values of the different bands of the satellite image mosaic that fell within the 100 m 

radius. The average value of all pixel values with more than 50% of their areas falling 

within a 100 m radius of the central location of the sample was used for the statistical 

analysis. This ensures that the majority of the pixel values corresponding with the areas 

covered by the field samples are represented in the analysis. 
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For the analysis bands 1, 2, 3, 4, 5, 7 were used, while also the Normalized Vegetation 

Index (NDVI) was calculated .. NDVI is often used as it has been demonstrated in many 

cases to be correlated to green biomass in semi arid areas (Tucker, 1979; Danaher et al. 

1992; Duncan et al., 1993; Verlinden and Masogo 1997), although Ringrose et al. (1994) 

found that green vegetation exhibited varying response curves in different climatic zones 

across all Landsat MSS wavebands and NDVI is therefore not always reliable. 

Statistical analysis of the data 

As not much is known about relationships between woody plant parameters and remote 

sensing in the study area, several models were tested for the relationships between woody 

cover and pixel values of individual bands. For modeling woody parameters basal area, 

biomass and volume based on crown cover, various commonly used regression models in 

forestry were used. 

Modeling of woody parameters 

To meet requirements of forest inventory and woody resource monitoring, cover data 

need to be significantly correlated to basal area and volume. Regression analysis was 

used to test these requirements. Possible influences limiting high correlations between 

cover and stand basal area are: canopy diameter overlap resulting in differences between 

calculated crown cover and canopy cove1 and the errors involved in using densiometers 

,. 
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to estimate canopy cover instead of measuring canopies. These possible influences were 

explored to estimate their importance. 

The data of 312 plots was used to examine the relationship between basal area of trees 

and crown cover percentage (Figure 4). Two outlier observations (plots) were removed 

because of errors in the data recording in the field. 

Testing a linear model gave the following results: 

Predicted Basal Area (m2ha-1) = -0.05476 + 0.1884 Calculated crown cover(%) r2actj = 

0.66, R =0.83 , SE= 1.68, F= 595, p<0.001 , N=312 

Very often biomass data are required for monitoring programs. These can be obtained 

using the following equation (Figure 4): 

Biomass (air dry tons ha-1) = 4.1179 + 1.1325*cover% r2 actj= 0.64 (R = 0.80) SE= 12.7 F 

= 555.2, p < 0.001 , N = 312 

Volume here means the volume of the whole trees including branches per hectare. In 

order to be able to compare traditional inventory results with cover estimates from 

satellite imagery, a relationship between mean volume estimates (in m3 ha-1) and tree 

cover percent data had to be derived. Using the plot data from the three areas where field 

data ~collected using method 2 the following regression equation was obtained 

(Figure 4): 
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Tree volume (m3 ha-1) = 5.261 + 1.394*cover%, r2actj = 0.62 (R = 0.77), SE= 16.5, F = 

501.998, p < 0.001, N=312 

Evaluation of Models 

A raster-based GIS was used to calculate average cover for certain areas and corrected for 

canopy overlap to derive average volumes in m3 ha-1 for three test areas where detailed 

forest inventory data were collected. The following three sites form the independent test 

data available to evaluate the results obtained by the method developed here using 

satellite imagery (Figure 1 ): 

Caprivi Region (old boundary demarcation) 

Caprivi State Forest 

Okongo Community Forest 

Finally, average tree cover and volumes were calculated for areas where no field data 

were collected due to security problems. 

Results 

Accuracy of histogram matching 
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Linear regression analysis of 654 random sz between pixel values of the reference 

image and adjacent overlapping images !._Were histogram matching was applied is 

presented in Figure 5. The Pearson correlation coefficient between reference image and 

matched images was R= 0.85 with an adjusted coefficient of determination r\ctj= 0.73. 

Correlations between satellite data and canopy cover 

Pearson correlation coefficients between total tree cover, shrub cover estimated with 

method 1~ and pixel values of the individual bands are presented in Table 4. The highest 

correlations were found in the near infrared waveband, TM band 4. Both trees and shrubs 

are significantly correlated, but tree cover decreases with increasing pixel values of TM 

waveband 4 while shrub cover increases with TM waveband 4. 

Pearson correlation coefficients between measured (method 2) total tree cover, shrub 

cover and pixel values of the individual bands are presented in Table 5. Again the highest 

correlations are found with TM waveband 4 but they are slightly higher than with method 

1. 

Vegetation cover models 

As Table 4 and 5 illustrate that correlations between methods 1 and 2 are similar and the 

data are not significantly different from each other, samples were pooled to calculate 

regression equations for tree and shrub cover with pixel values of band 4. 
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For trees the resulting model is: 

Tree cover%= 126.99-1.166 band 4 (r2actj= 0.51, r = 0.72, F64 = 55.8, P <0.001) 

For shrubs the resulting model is: 

Shrub cover%= -54.79 + 0.115 band 4 (r2actj=0.48, r = 0.69, F64 = 43.5 P <0.001) 

This negative relationship between trees and shrubs in a relatively dense woodland area 

suggests that reflectance of the overstory may override reflectance of the understory and 

that the equation for shrubs is an artifact. 

It appeared that several outliers suggested two different relations between tree cover and 

pixel values of band 4. Upon closer inspection of the images it appeared that in most 

sandy soils fire scars of the previous dry season could still be observed and they appeared 

to have an influence on the relationship. Areas not affected by fire scars or by heavy 

grazing the subsequent wet season show a lower canopy cover with the same pixel values 

as compared with the affected areas. ~his relationship is demonstrated in Figure 6. It 

appeared that the majority of samples belonging to the affected areas are in the dry 

deciduous Kalahari woodlands. 

For not affected areas the resulting model is: 

Tree cover = 147.5 - 1.560 Band 4 (r2 adj = 0.52, r = 0.75, SE estimation =7.2, F = 16.4, 

p<0.0001) 
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For fire and grazing affected areas the resulting model is: 

Tree cover = 141.337 - 1.298 Band 4 (r2 actj = 0.59, r=0.77, SE estimation = 8.04, F= 

66.4, p<O.OOOl) 

27 independent samples collected in 2002 in two different areas of Kavango (one in the 

cJ.West, one in the ~t) and one area in East Caprivi were used to test the accuracy of 

regression equations obtained. The areas in Kavango were sampled with method 2, the 

one in East Caprivi with method 1. For affected areas the coefficient of determination 

between the predicted and calculated tree cover was r2actj= 0.7 (correlation R=0 . 85),~ 
the not affected areas the correlation between the predicted and calculated tree cover was 

r2actj=0.67 (R=0.83). The overall coefficient of determination between the predicted tree 

cover and calculated cover in the field was r2actj=0.77 (R=0.88). There is~ good 

agreement between estimated and observed values, especially taking into account that 1) 
I /;:J:iL L11 

there is a distance of more than 500 km between samples, 2) a big difference between 
,t ~d.J 

vegetation types (Kalahari woodland and Colophospermum mopane woodlands), 3) a 
dJ;;i; OJt{l. ~ 

time difference between tree measurements and the image and 4) possible image 
A 

processing errors (image registration, histogram matching). The relationship between the 

estimated and measured tree cover is shown in Figure 7. The graph shows that at high 

calculated crown cover the estimated tree cover from the regression equations is an 

underestimate. Because of overlapping canopies, the calculated cover percentage includes 

a certain overlap. This overlap was analyzed with a GIS by plotting the tree crowns in 36 
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clusters on their exact locations and defining the projected coverage. The overlaps on 

each cluster are shown in Figure 8 and the 2nd order polynomial has a coefficient of 

determination ofr2actj = 0.90 with the calculated crown coverage. 

The overlap is fairly low - less than 2 %-units - up to a measured cover of 20 %. With 

higher covers, the overlap increases rapidly. This suggests that at higher cover levels, 

canopy cover might be significantly underestimated with remote sensing when the 

calculated crown cover percentage is used without correction for overlap. The influence 

of canopy overlap largely explains the underestimate at high cover observed in Figure 7. 

Densiometer readings and canopy measurements were obtained on 64 clusters (Figure 9). 

In principle, the densiometer estimates should be lower as there is no crown overlap in 

the readings. However, the figure shows that the densiometer in many cases gives an 

overestimate. In measured woody plant data, shrubs were defined to have a dbh less than 

5 cm. However, the height of a shrub can be 4 meter or more and there is a risk of 

including them in the densiometer counting. This has been corrected in subsequent 

measurements in the field. The coefficient of determination r2 adj between densiometer 

readings and calculated crown cover is 0.67. 

Evaluation of models 

18 



For results of the estimated volumes using remote sensing to be accurate, estimates 

should fall within the calculated 95 % confidence limits of the averages obtained by field 

inventories. Table 6 demonstrates that most estimates are somewhat below average, but 

all estimates fall within the 95 % confidence limits. 

Table 7 summanzes results of the average volumes per hectare obtained from the 

estimated average tree cover derived from remote sensing data for regions and areas that 

were not yet covered by the field based inventory method. It has to be noted that the 

method presented here has the additional advantage that new estimates can quickly be 

calculated when boundaries of regions change as happened in 2000 with the boundaries 

of Caprivi and Kavango regions. 

Discussion 

Size of plots has an influence on correlation between tree and shrub cover and TM 

wavebands. Plots with a maximum radius of 30 m are not necessarily representative .f~ '1) 
the immediate surroundings, while positioning errors with the GPS before 2000 and 

errors of satellite image registration possibly contribute to low correlations. Small size of 

plots jds apparently more influential for trees than shrubs, as correlations between shrub 

cover and TM wavebands ~e higher (Verlinden and Laamanen, 2001 ). 
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The image calibration with histogram matching gave satisfactory results, although the 

correlation of R= 0.85 and the scatter around the regression line showed that errors of up 

to 5 %tree cover on a pixel basis as result of the calibration method are to be expected. 

A negative relationship between tree cover and shrub cover in the more wooded 

vegetation types characterized by Burkea africana, Baikiaea plurijuga, Guibourtia 

coleosperma and Pterocarpus angolensis was demonstrated. High influence of 

subcanopy when the overstory has a low cover has been found elsewhere, usually with 

high reflectance in the NIR as opposed to stands with a high cover of the overstory 

(Butera, 1986). 

Different models obtained for trees and shrubs suggest that total woody vegetation cover 

is{in" ~northern Narnibian conditio~~ n~to monitor i:tr remote 

sensing and that different woody layers have to be treated separately. It has been shown 

that increased shadows and dark background decrease reflectance (Koch et al., 1990). 

Shadows are likely to influence imagery in this study as images are captured early in the 

morning before 9 am. Moleele et al. ( 1999) found significant correlations of a shrub layer 

between 0.3 - 1.5 m and mid infrared Landsat TM bands 5 and 7. This suggests that 

different models need to be tested for shrub dominated vegetation types in Namibia. 

There were no significant differences between the results of inventory methods 1 and 2 of 

this study, although method 2, based on measurements of woody plant' performed 

slightly better than method 1, based on estimated woody plant parameters. This means 
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that densiometers and Bitterlich relascopes are cost-effective in woodland types where 

already sufficient measurements have been acquired to test validity of established models 

between vegetation cover, biomass and volumes. 

The observed influence of fire and heavy grazing complicates not only the estimate of 

woody cover as additional data are required to distinguish between affected and 

s 
unaffecte1 areas, but also monitoring woody cover change. It appear~ that fire or 

grazing~ not affect flood plain areas and areas with Colophospermum mopane the 

subsequent season. It is mainly sandy soils with Kalahari woodland that show the 

observed effect of increased reflectance in the NIR. Col well (1974) found that an increase 

in reflectance in NIR occurs when the background is bright, such as grass or light colored 

soils. Most Kalahari sandy soils in the study area are light in calor. In view of the low 

number of samples in Kalahari woodland that were not affected by fires or heavy grazing 

or a light background soil color, one can apply the equation of affected areas on the 

whole area covered by this vegetation type and still fall within the 95% confidence limits 

of inventory results. Interference by fire was also observed by Danaher et al. (1998). This 

interference means one has to be very prudent with change detection results using a 

limited number of images in a time series. The results of this study suggest that 

monitoring woody cover should use several images in conjunction with fire scar maps to 

be able to interpret changes, but more research is needed to evaluate the use of the 

methodology for monitoring woody cover change. This study suggests that with errors 

due to fire impact, histogram matching and errors in tree cover estimates~nly changes of 

more than 30% canopy cover should be considered significant in change analysis. 

, . 
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That TM band 4 was shown to be the most useful band for modeling tree cover is not 

unique although in the NIR region, the correlation between volume and volume related 

~/10 
variables versus reflectance may vary from positive (Spanner et al. , 1990) # no 

; 

correlation (Franklin, 1986) to negative (Poso et al. , 1987). 

Khorram et al. (1990) regressed% defoliation on TM band 4 with altitude and elevation 

as independent variables and found high coefficients of determination, partly a result of 

adding elevation. The latter is unnecessary as the present study area is very flat. 

The validity test of regression equations with a different dataset indicated that the 

equations are valid for a very large area and for the two main woodland vegetation types 

in northern Namibia and surrounding areas. It also demonstrates that the method of 

calibration of the images using histogram matching is acceptable across different scenes 

and woodland types with this calibration method. 

This study confirmed correlations between tree cover, basal area, biomass and volumes 

found elsewhere (Butera, 1986; Kleman, 1986; Poso et al. , 1987; Brockhaus and Korram, 

1989; Koch et al. , 1990). Comparison between volume estimates obtained by traditional 

inventory methods and with estimates obtained with the remote sensing derived method 

indicates that there is an overall good agreement. Estimates using remote sensing derived 

equations all fell within the 95 % confidence limits of the forest inventory data. 

Especially when the regions were very large, estimates were close to the average obtained 

by field inventories. For areas with a relatively high volume per hectare, estimates are 

below average. Although the woodlands in the study area are open, it is possible that at 
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higher canopy cover levels of over 30%, the low reflectance in NIR underestimates cover 

due to more shadows (Ekstrand, 1993). 

While the traditional inventory method gives an indication of species composition but 

limited indication of spatial distribution, the method developed here gives detailed high 

resolution distribution information but no information on species composition. It can be 

argued that there are faster methods to get reliable information on species composition 

and frequencies than an inventory, or information on frequencies from inventories located 

nearby can be used. 

Landsat TM imagery is available at approximately 0.0002 US $ per ha. Taking into 

account the limited processing needed for calculating cover and deriving volumes, it is 

suggested that Landsat TM imagery is a cost-effective alternative to field sample-based 

inventories for regional woody resources assessment with respect to total tree cover, 

volumes, basal area and biomass for similar woodland types in Angola, Zambia, 

Zimbabwe and Botswana. Future inventory designs in developing countries should take 

into account the requirement of large-sized plots to be able to use the data in remote 

sensmg. 
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Table 1. List of species with parameters for volume functions of 7 reference species. 

Volume function parameters were derived from cut trees. The last column refers to the 

type of volume function (f) used for the species. f(l) is ln (v) = aO + al *d + a2*d2 and f 

(2) v/d2 = (aO + al *d + a2*d2) 

Species aO al a2 f 

1. Baikiaea plurijuga Harms 0.2501141 0.0227406 -0.000198461 2 
2. Burkea africana Hook. 0.0976836 0.034642 -0 .000334653 2 
3. Colophospermum mopane 
Kirk ex Leonard 0.12798339 0.01580639 -0 .00014894 2 
4. Combretum collinum Fresen 0.1932033 0.0199121 -0 .000108192 2 
5. Lonchocarpus nelsii 
Schinz ex Heering & Grimme 0.46735748 0.00342083 0.00008758 2 
6. Pterocarpus angolensis DC. 2.7760988 0.1426546 -0 .000868738 1 
7. Terminalia sericea Burch. ex DC. 0.21795109 0.01407904 -0 .00010783 2 
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Table 2. List of all species with family and volume model j.P the inventories. In column 
model the numbers correspond with the reference trees onable 1 used for calculating 
volumes. 

Species Family model 

Acacia ataxacantha DC. M imosoideae 
Acacia erioloba E. Meyer Mimosoideae 
Acacia fleckii Schinz Mimosoideae I 
Acacia polyacantha Willd. Mimosoideae 7 
Acacia schweinfurthii Brenan & Exell Mimosoideae 1 
Ancylanthos bainesii Oliver Rubiaceae 7 
Baikiaea plurijuga Harms Caesalpinioideae 
Baphia massaiensis Tau b. Papilionoideae 7 
Bauhinia petersiana Bolle Caesalpinioideae 7 
Boscia albitrunca (Burch) 
Gilg & Benedict Capparaceae 6 
Burkea africana Hook. Caesalpinioideae 2 
Colophospermum mopane Kirk ex Leonard Caesalpinioideae 3 
Combretum apiculatum (Schinz) Exell Combretaceae 7 
Commiphora africana (a. Rich) Engl. Burseraceaea 4 
Commiphora angolensis Engl. Burseraceaea 4 
Combretum collinum Fresen. Combretaceae 4 
Combretum elaeagnoides Klotzch Combretaceae 4 
Combretum engleri Schinz Combretaceae 4 
Combretum psidioides Welw. Combretaceae 4 
Combretum zeyheri Sonder Combretaceae 4 
Croton gratissimus Burch. Euphorbiaceaea 7 
Dialium engleranum Henriques Caesalpinioideae 7 
Dichrostachys cinerea (L.) W ight & Arn. M imosoideae 7 
Diplorhynchus condylocarpon Pichon Apocynaceae 7 
Dombeya rotundifolia (Hochst) Planchon Sterculiaceae 7 
Erythrophleum africanum (Welw. Ex Benth.) 
Harms Caesalpinioideae 2 
Grewia flavescens Juss. Tiliaceae 7 
Grewia bicolor Juss. Tiliaceae 7 
Grewia flava DC. Tiliaceae 7 
Grewia retinervis Burret Ti liaceae 7 
Guibourtia coleosperma (Benth.) J. Leonard Caesalpinioideae 6 
Lonchocarpus nelsii Schinz ex Heering & 
Grimme Papilionoideae 5 
Markhamia acuminate (Kiotsch) K. Schum. Bignoniaceae 2 
Mundulea sericea (Willd.) Chev. Papilionoideae 7 
Ochna pulchra Hook. Ochnaceae 6 
Ozoroa insignis Delile Anacardiaceae 7 
Ozoroa longipes (Eng. & Gilg.) R. & A. 
Fernandes Anacardiaceae 7 
Ozoroa paniculosa (Sonder) R. & A. Fernandes Anacardiaceae 7 
Ozoroa schinzii Anacardiaceae 7 
Pavetta zeyheri Sander Rubiaceae 7 
Peltophorum africanum Sonder Caesalpinioideae 6 
Pseudolachnostylis maprouneifolia Pax Euphorbiaceae 7 
Pterocarpus angolensis DC. Papilionoideae 6 
Rhigozum brevispinosum Kuntze Bignoniaceae 7 
Rhus tenuinervis Engl. Anacardiaceae 7 
Schinziophyton rautanenii Euphorbiaceae 2 
Securidaca longepedunculata Fresen Polygalaceae 6 
Steganotaenia araliacea Hochst. Apiaceae 6 
Strychnos cocculoides Baker Loganiaceae 7 
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Strychnos pungens Solereder 
Terminalia sericea Burch. ex DC. 
Vangueria infausta Burch. 
Ximenia americana L. 
Ximenia caffra Sonder 

Loganiaceae 
Combretaceae 
Rubiaceae 
Olacaceae 
Olacaceae 

7 
7 
6 
6 
6 
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Table 3. The satellite imagery used in the study 

Sensor Path/Row Date 

TM5 (band1-4 only) 174/072 24 May 2000 
TM5 (band1-4 only) 174/073 24 May 2000 
ETM+ 175/072 1 0 April 2000 
ETM+ 175/073 1 0 April 2000 
ETM+ 176/072 12 March 2000 
ETM+ 176/073 4 June 2000 
ETM+ 177/072 24 April 2000 
ETM+ 177/073 24 April 2000 
ETM+ 178/072 4 July 2000 
ETM+ 178/073 17 May 2000 
TM5 179/072 29 April 1997 
ETM+ 180/072 22 April 2000 
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Table 4: Tree cover (T) and shrub cover (S) Pearson Correlation Coefficients (R) with 
average pixel values of 6 TM wavebands and NDVI in a 100 m square around the central 
point of the sampling area using inventory method 1 (n=49). * *: Correlation is significant 
at the 0.01level (2-tailed); *:Correlation is significant at the 0.05 level (2-tailed) 

Type R (bl) R(b2) R (b3) R (b4) R (b5) R (b7) R(NDVI) 

Trees -0.23 -0.25 -0.50** -0.66** -0.39* 0.25 0.14 

Shrubs -0.05 0.20 0.17 0.65** 0.27 -0.11 0.21 
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Table 5: Tree cover (T) and shrub cover (S) Pearson Correlation Coefficients (R) with 
average pixel values of 6 TM wavebands and NDVI in a 100 m radius around the central 
point ofthe sampling area using inventory method 2 (n=19). **:Correlation is significant 
at the 0.01 level (2-tailed); *:Correlation is significant at the 0.05 level (2-tailed) 

Type R (bl) R (b2) R(b3) R (b4) R(b5) R(b7) R(NDVI) 

Trees -0.28 -0.40 -0.35 -0.74** -0.41 0.25 0.14 

Shrubs -0.04 0.17 0.11 0.70* * 0.11 -0.07 0.52* 
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Table 6: Comparison between estimated tree volumes derived from estimated tree cover 
with remote sensing data and calculated tree volumes obtained by field based inventory 
data 

Area Cover Mean volume Mean volume 95% confidence 
estimate (%) estimate from estimate from limits of 

satellite images inventory (m3ha-1) inventory mean 
(m3ha-1) 

Okongo 18.34 32.32 45 32-58 
Caprivi region 11.12 21.26 21.37 20.25-22.49 
(old boundary) 
Caprivi State 16.85 29.75 33 .3 28-37 
Forest 



Table 7. Cover% and mean volume estimates based on remote sensing for some regions 
previously not assessed or with a recent new boundary 

Region 

Ohangwena 
Ohangwena 
wooded area 
Kavango (new 
boundary) 
Kavango (old 
boundary) 
Caprivi (new 
boundary) 

Cover estimate 
(%) 

11.234 
13.316 

11.58 

11.63 

11.14 

Volume 
Estimate 
(m3/ha) 
21.4 
24.52 

21.9 

21.97 

21.3 
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Figure 1. The insert below shows the location ofNamibia in Africa. The map below 

shows Namibia and neighbouring countries. The map on top shows the areas used for 

sampling woody plants with methods 1 and 2 and the areas used for testing the resulting 

models with independent samples and areas used for comparison of volume data 

calculated from field inventories and volumes estimated from models based on remote 

sensing (Caprivi, State forest and Okongo). 
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Figure 2. Design of the 2 alternative field inventory methods. 1: Method 1 estimates 

canopy cover using densiometer and Bitterlich gauge. The dots indicate where 

densiometer readings and Bitterlich gauge readings were done. GPS readings were taken 

at each corner point. 2: method 2 uses measurements of woody plant parameters in the 

circular plots combined with Bitterlich gauge and densiometer readings. 
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Figure 3. Diameter distributions measured at 1.3 m height of the trees felled for 
Q 

graphs. No of obs =number of observations. 
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Figure 4. Relationships between basal area (m2ha-1), estimated biomass (tons ha-1) , 

volume (m3ha-1) and calculated crown cover(%). N= 312. 
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Figure 5: Frequency scatterplot with linear fit based on random sampling of pixel values 
ofTM band 4 of the reference image and 2 histogram matched images adjacent to the 
reference image (r2actj =0.73, N= 654). 
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Figure 6: Regression analysis of tree cover and values of spectral waveband 4 with the 
distinction of areas affected or not by fire and heavy grazing. The graph shows that 
different maximum and minimum thresholds in the band 4 image should be applied for 
each equation (N = 88). 
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Figure 7. Relationship between measured tree cover and estimated tree cover using 
regression equations with an independent dataset (N = 27) 
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Figure 8. Relationship between canopy overlap obtained by GIS analysis of overlapping 
crown projections and calculated crown cover from measured crown diameters of 
separate trees (N=36). 
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Figure 9. Relationship between crown cover measured with the densiometer and the 
calculated crown cover from measured crown diameters (N= 64). 
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